منابع مشابه
Why Is Clean Air Clean?
Air exhibiting very low concentrations of light-scattering aerosol particles is occasionally observed even in industrialized regions. Evidence is presented that this very clean air results from highly efficient removal of aerosol particles coupled to the removal of water in precipitation.
متن کاملVom Clean Model zum Clean Code
In diesem Beitrag wird der Zusammenhang zwischen Code-Qualität und UMLModellen in einem Software-Entwicklungsprozess in der Informatik-Ausbildung vorgestellt. Es wird untersucht, welche der im Code sichtbar werdenden Mängel bereits im Modell erkannt werden können. Werkzeuge zur statischen Code-Analyse und Refactoring-Techniken unterstützen die Studierenden beim Entdecken und Beseitigen der Qual...
متن کاملGeneralized f-clean rings
In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.
متن کاملWEAKLY g(x)-CLEAN RINGS
A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...
متن کاملStrongly nil-clean corner rings
We show that if $R$ is a ring with an arbitrary idempotent $e$ such that $eRe$ and $(1-e)R(1-e)$ are both strongly nil-clean rings, then $R/J(R)$ is nil-clean. In particular, under certain additional circumstances, $R$ is also nil-clean. These results somewhat improves on achievements due to Diesl in J. Algebra (2013) and to Koc{s}an-Wang-Zhou in J. Pure Appl. Algebra (2016). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CrossCurrents
سال: 2019
ISSN: 0011-1953,1939-3881
DOI: 10.1111/cros.12378